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How large are dissipative effects in noncritical Liouville string theory?
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In the context of non-critical Liouville strings, we clarify why we expect non-quantum-mechanical dissipa-
tive effects to beO(E2/M P), whereE is a typical energy scale of the probe, andM P is the Planck scale. In
Liouville strings, energy is conservedat bestonly as a statistical average, as distinct from Lindblad systems,
where it isstrictly conserved at an operator level, and the magnitude of dissipative effects could only be much
smaller. We also emphasize the importance of nonlinear terms in the evolution equation for the density matrix,
which are important for any analysis of complete positivity.
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I. INTRODUCTION

Motivated by speculations concerning quantum grav
some years ago a modification of conventional quantum
chanics was proposed@1#, which admits dissipative phenom
ena such as transitions from pure to mixed states. This
proach postulates the appearance of a non-Hamiltonian
in the quantum Liouville equation describing the evoluti
of the density matrix:

ṙ~ t !5 i @r,H#1d”Hr. ~1!

A derivation of this equation based on a string-inspired tre
ment of quantum fluctuations in space-time has also b
presented@2#. This formalism was applied initially to simple
two-state systems such as the neutral kaon system@1,3,4#.
Arguments have been presented that the magnitude of
dissipative effects could be suppressedminimallyby a single
power of the gravitational scaleM P;1019 GeV, i.e.,

d”H5OS E2

M P
D ~2!

whereE is a typical energy scale of the probe system wh
experiences quantum-gravitational induced decoherence
ing its propagation through the quantum-gravity ‘‘medium
@5#. In particular, the estimate~2! was argued to apply within
a non-critical Liouville string model for this foamy spac
time medium. If the estimate~2! is indeed correct, such
modifications of quantum mechanics might be accessibl
experiment in the foreseeable future, for example in the n
tral kaon system, which offers one of the most sensitive
croscopic tests of quantum mechanics@1,3,4#.

A new arena for testing quantum mechanics has now b
opened up by neutrino oscillations, and atmospheric-neut
data have recently been used@6# to constrain dissipative ef
0556-2821/2000/63~2!/024024~9!/$15.00 63 0240
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fects within a Lindblad formalism@7#. However, it has been
pointed out@8# that the order-of-magnitude estimate~2! is
not applicable to modifications of quantum mechanics
scribed by the Lindblad formalism@7#, because the energ
scaleE appearing in Eq.~2! is no longer the absolute energ
of the probe, but ratherthe energy varianceDE[uE12E2u
of the two-state system:

d”H5OS DE2

M P
D . ~3!

It is therefore crucial@6,8# to know whether the Lindblad
formalism @7# applies to the type of of open quantum
mechanical system provided by a probe propagating thro
space-time foam.

There are three key requirements for deriving the Lin
blad formalism@7#, namely energy conservation at the ope
tor level, unitarity and entropy production. However, w
have pointed out previously@2# within our stringy approach
to quantum gravity that, although unitarity and entropy
crease follow from generic properties of the world-she
renormalization group for the Liouville string, energy co
servation should be interpretedat bestas astatistical prop-
erty of expectation values, and even this may be violated i
cases with potential physical interest, such as a D-br
model for space-time foam. Thus we do not believe that
Lindblad formalism@7# is directly applicable to propagatio
through space-time foam, since energy conservation is
imposed at the operator level. It is this difference that p
mits the magnitude of the dissipative effects to be of or
given in Eq.~2!, larger than that, Eq.~3!, suggested in@8#.
We also argue that Eq.~1! contains important nonlinear ef
fects, which are potentially significant@9# for the analysis
@10# of complete positivity.
©2000 The American Physical Society24-1
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II. DISSIPATIVE DYNAMICS IN THE LINDBLAD
FORMALISM

We first give various definitions of the concepts used
the following. We consider a quantum-mechanical syst
with a density matrixr, in dissipative interaction with an
environment. In the case of a pure state described by a w
vector uC&, the von Neumann density matrix operator
given by

r5uC&&Cu, ~4!

and in a representation$a% the matrix elements ofr are

r~a,a8![^a8uC&^Cua&. ~5!

In general, for open systems one cannot always define a
vector, in which case the density matrix is defined over
ensemble of theoriesM:

r[TrMuC&^Cu. ~6!

In the coordinate representation,$a%5$xW%, the diagonal ele-
ment r(x,x;t) is the probability densityP(x,t), which is
given in the pure-state case by the wave function at the t
t:

r~x,x;t ![P~x,t !~5uC~x,t !u2!>0. ~7!

For well-defined representations$a% one must have the pos
tivity property

r~a,a![ra.0. ~8!

Therefore, to define an appropriate density matrix, the op
tor ra must have positive eigenvalues in the state space$a%
at any timet. Even if the matrixr(t50) has positive eigen
values, it is not guaranteed that the time-evolved ma
r(t)5v(t)r(0) necessarily also has positive eigenvalu
This requirement ofsimple positivity~SP! has to be imposed
and restricts the general form of the environmental entan
ment. Further restrictions apply when one considers$a% as
coordinates of a subsystem within a larger system interac
with the environment, namely the requirements ofcomplete
positivity ~CP! @10#.

In the particular case of a linear dissipative system w
energy conservation, the Lindblad formalism@7# applies; i.e.,
the quantum evolution is governed by a Markov-type proc
described by an equation of the form

ṙ~ t !5 i @r,H#1d”H@r#,

d”H[2(
i

D i
(d)bir~ t !bi

†

2(
i

D i
(d)~bi

†bir~ t !1rbi
†bi !,

D i
(d)>0, ~9!
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which maintains SP. HereH denotes the appropriate Hami
tonian operator of the subsystem, the positive coefficie
D (d) are associated to diffusion, and it can be shown that
extra ~non-Hamiltonian! terms in the evolution equation~9!
induce complete decoherence, as recalled by the index (d).1

Now suppose one demands that energy be conserveat
the Hamiltonian operator level, so that one not only require
the statistical average Tr(rH) to be independent of time, bu
also the absence of explicit time dependence of the oper
H:

]H

]t
505

d

dt
Tr~rH !. ~10!

This requirement, together with the monotonic increase
the von Neumann entropyS52Tr r lnr, implies, for the
environmental operatorsbi ,bi

† ,

@bi ,H#50, bi5bi
† . ~11!

Then, the environmental partd”H@r# of the evolution ~9!
assumes a double-commutator form@13,8#

d”H5(
i

D i
(d)@bi ,@bi ,r##. ~12!

Clearly, for a two-state system, with energy levelsEn ,n
51,2, the only non-trivial Lindblad operators satisfying E
~11! are of the formbi}H.

This simplified case with only one operator suffices f
our purposes@8#, and we restrict our discussion to this cas
One may then estimate the magnitude of the dissipative
fects by considering a statistical average ofd”H with respect
to a complete basis of states, which can be taken as
energy eigenstates$um&% of the Hamiltonian H, Hum&
5Emum&, m51,2. In such a case one has@8#

^^d”H&&52 (
m,n51

2

^murun&^nurum&En~En2Em!

52^1uru2&^2uru1&~E22E1!2 ~13!

and thus one gets the order of magnitude~3! for the possible
dissipative effects@8#. A similar conclusion is reached if on
uses position eigenstatesuq& as a basis, which is the case
spontaneous localization models@12,13,8#, instead of energy
eigenstates. In this case, the dissipative effects are pro
tional to the position varianceDq, i.e., the separation
uq12q2u between the centers of the wave packets.2 These

1It should be noticed that the density-matrix evolution equat
~9! can be recast, using Eq.~6!, as a state-vector evolution equatio
of stochastic Ito type@12#, if one wishes. We prefer the more gen
eral density-matrix formalism, because the concept of a state ve
is not always well defined, particularly in our quantum-gravity foa
context@1,2#.

2For instance, of the corresponding neutrino probes in the
ample discussed in@6#.
4-2
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HOW LARGE ARE DISSIPATIVE EFFECTS IN . . . PHYSICAL REVIEW D 63 024024
estimates are considerably smaller than our estimate~2!, so it
is important to address carefully the question how the Li
ville formalism differs from the generic Lindblad formalism

III. DISSIPATIVE DYNAMICS IN NON-CRITICAL
STRINGS

For the benefit of the non-expert reader, we now revi
how a dissipative evolution equation of the form~1! arises in
the context of non-critical string, and how energy isnot con-
served atan operator level, but at bestas astatistical aver-
age. We also discuss the special circumstances under w
Eq. ~9! may be obtained, in the hope of clarifying the esse
tial differences between the two approaches.

A. Non-critical strings in flat world sheets

Critical string theory is described by a conformal fie
theory S* on the two-dimensional world sheetS. We de-
scribe non-critical string in terms of a generic non-conform
field theory (s model! on S. This is perturbed away from
conformal symmetry~criticality! by deformations that are
slightly relevant ~in a world-sheet renormalization-grou
sense!, with vertex operators$Vi% and couplings$gi%, which
parametrize the space of possible theories:

S5S* 1E
S
d2sgiVi . ~14!

The renormalization-groupb function for a couplinggi on a
flat world sheet reads

b̂ i52«gi1b i , b i5Cjk
i gjgk1••• ~15!

where «→01 is a regularizing parameter; e.g., in dime
sional regularization, the dimensionality of the world shee
assumed to bed522«. As is clear from Eqs.~15!, « plays
the role of a small anomalous dimension that makes the
eratorVi slightly relevant. According to standard renorma
ization theory, counterterms can be expanded in poles in«,
and we make the standard dimensional-regularization
sumption that only single poles matter, while higher-ord
poles cancel among themselves.

The fact that the world sheetS is in general curved im-
plies that one has to choose a regularization scalem which is
local on the world sheet@2#, as is standard in stringys mod-
els @14#. The crucial next step in our approach@2# is to pro-
mote the scalem(s) to a dynamical world-sheet fieldf
which should appear in a world-sheet path integral, tak
the form of Liouville string theory@15#. Because of its
target-space signature, which isnegativefor the supercritical
strings@16# we consider, the world-sheet zero mode of th
field is identified with target time.

The conformal invariance of the stringys model may be
restored by Liouville dressing@15#, leading to the following
equation for the dressed couplingsl i(f,gi):

l̈ i1Q l̇ i52b̂ i ~16!
02402
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whereQ2 is the central-charge deficit of the non-conform
theory@15,16#.3 When one identifies the Liouville field equa
tion ~16! with a curved-world-sheet renormalization-grou
flow @2#, the Liouville-dressed couplingsl i may be identi-
fied with appropriately renormalizeds-model couplingsgi
on curved world sheets.

As was shown in@2#, the summation over possible topolo
gies of the world sheet induces canonical quantization of
theory-space coordinates$gi%, much as the couplings in loca
field theories are quantized in the presence of wormhole fl
tuations in space-time@17#. This canonical quantization fol
lows from a certain set of Helmholtz conditions in theo
space@2#, which are obeyed provided theb i functions obey
the gradient-flow property

b̂ i5Gi j
]C@g#

]gj
~17!

where C@g,t# is the ZamolodchikovC function @18#, a
renormalization-group invariant combination of averag
@with respect to Eq.~14!# of components of the world-shee
stress tensor of the deformeds model,Gi j is the inverse of
the Zamolodchikov metric in theory space,

Gi j 5^ViVj&, ~18!

and the angular brackets denote any expectation value
the partition function of the deformeds model~14!, summed
over world-sheet genera. The ZamolodchikovC function
plays the role of the off-shell effective target-space action
string theory, which allows the identification

C@g#5E dt~piġ
i2E! ~19!

whereE is the Hamiltonian operator of the string matter.
critical string theories, the couplingsgi are exactly marginal,
b i50, and this formalism has trivial content, but this is n
longer the case@2# when one goes beyond critical strings.

Renormalizability of the world-sheets model implies the
scale independence of physical quantities, such as the p
tion function or the density matrixr(gi ,pj ,t) of a string
moving in the background parametrized by the$gi%, viewed
as generalized coordinates in string theory space, with thpj
the canonically conjugate momenta in this space, which
associated with the vertex operatorsVj in a subtle sense@2#.
Let t5 lnm0 be the ~zero mode of! the world-sheet
renormalization-group scale. Since the elements of the d
sity matrix are physical quantities, and hence independen
the world-sheet scale, they must obey@2# the following
renormalization-group equation:

d

dt
r~gi ,pj ,t !5

]

]t
r1ġi

]

]gi
r1 ṗi

]

]pi
r50 ~20!

3We used this approach in@2# to derive a stochastic Fokker
Planck equation with diffusion for the corresponding probabil
distribution in the theory space$l i%.
4-3
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where an overdot denotes a partial derivative with respec
t. The totalt derivative above incorporatest dependence both
explicitly and implicitly, through running couplings and gen
eralized momenta.4

As an example how non-critical string dynamics ente
one may consider thereduced density matrixrs(gs

i ,ps, j ,t)
of an effective string theorydescribing lowest-level string
modes characterized by asubset$gs

i %P$gi% of couplings to
operators$Vs

i % that are not exactly marginal. These deform
tions are remnants of mixtures of these lowest-level mo
with higher ~Planckian! modes of the string, which are ini
tially exactly marginal. However, this property is lost whe
the higher-level modes are integrated over, so that the r
nant $Vs

i % provide a non-trivial background ‘‘environment
for the observable lowest-level modes to propagate throu
This ‘‘gravitational environment’’ of higher-level states
quantized when one sums over world-sheet genera. We
made case studies of such systems, based on stringy b
holes in two space-time dimensions@19#,5 and higher-
dimensional analogues provided by the recoil@11# of
D-branes@20# when struck by a light propagating strin
state. At present, we only discuss some generic propertie
this Liouville approach to space-time foam@2#.

The non-critical subsystem$gs% acquires non-trivial dy-
namics through Eq.~20!, since theb i functions are non-
trivial. Summing over genera, taking into account the
nonical quantization of the theory space mentioned abo
and identifying the Liouville renormalization-group scale a
the target time variable@2#, one arrives at the following evo
lution equation for the reduced density matrixoperatorrs of
the observable, propagating, localized, lowest-level mode
the effective string theory:

] trs~gs ,ps ,t !5 i @rs ,H#1 i b̂s
i Gi j @gs

j ,rs# ~21!

whereH is a Hamiltonian operator for the subsystem co
sisting of propagating string modes, and the second term
the right-hand side of Eq.~21! is an explicit string represen
tation for d”H in Eq. ~1!. It is clear that our fundamenta
equation~21! stems from the requirement of renormalizab
ity ~20!.

This description has several important properties, wh
we now describe. For notational convenience in what f
lows, we omit the sub-indexs in the couplings and conjugat
momenta, i.e.,gs→gi , etc., but we always imply quantitie
in the subsystems, unless otherwise stated. We remind t

4Here we study the general consequences of Eq.~20!, although it
is possible that only the diagonal elements of the density matri
the coordinate representation, which may be interpreted as prob
ity densities, are in fact measurable physical quantities, in wh
case the requirement~20! should be applied only to the world-she
partition function of the stringys model.

5In this case the environment is provided by discrete delocali
solitonic states, which mix explicitly with lowest-level propagatin
matter states of the two-dimensional string in marginal deform
tions of the two-dimensional black hole, as a reflection of infini
dimensionalW` gauge symmetries@2#.
02402
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reader that in the non-critical string theory model discus
here the full system is conformal, and as such the ti
~renormalization-group! evolution ~20! acquires trivial con-
tent.

Probability conservation. The total probability P
5*dpldgl Tr@r(gi ,pj )# is conserved, because

Ṗ5E dpldgl TrF ]

]pi
~Gi j b

jr!G ~22!

can receive contributions only from the boundary of pha
space, which must vanish for an isolated system.

Entropy growth. The entropyS52Tr(r lnr) is not con-
served, to the extent that relevant couplings withb iÞ0 are
present,

Ṡ5~b iGi j b
j !S, ~23!

implying a monotonic increase for unitary world-sheet the
ries for whichGi j is positive definite. We see from Eq.~23!
that any running ofany coupling will lead to an increase in
entropy, and we have interpreted@2# this behavior in terms of
quantum models of friction. The increase~23! in the entropy
corresponds to a loss of quantum coherence, which is
known in models.

Statistical conservation of energy. The most important
property for our purposes here is that energy isat bestcon-
served statisticallyon the average@2#. In other words, one
has explicit time dependence~dissipation! in the Hamiltonian
operator of the subsystem, thereby allowing flow of ene
to the environment at an operator level. Then, it isat best
only the right-hand equality in Eq.~10! that is valid, depend-
ing on the specific model.6

To see this, we recall, as discussed above Eq.~20!, that
the renormalizability of thes model impliesd/dt Trr50.
Since we identify the target time with the renormalizatio
group scalet on the world sheet@2#, ] t Trrs may be ex-
pressed in terms of the renormalized couplingsgi by means
of the evolution equation~21!. We now compute

]

]t
^^E&&5

]

]t
Tr~Er!5^^] t~E2b iGi j b

j !&& ~24!

where E is the Hamiltonian operator, and̂ ^ . . . &&
[Tr@r(•••)#. In deriving this result, we took into accoun
the evolution equation~21! and the quantization rules in
theory space@2#,

@gi ,gj #50, @gi ,pj #52 id i j , ~25!

as well as the fact that in strings models the quantum op
eratorsb iGi j are functionals only of the coordinatesgi , and
not of the generalized momentapi . We also note that, in ou
approach, the total time derivative of an operatorQ̂ is given
as usual by

in
il-
h

d

-
- 6See the next section for a question mark that hangs over even
statistical equality.
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d

dt
Q̂52 i @Q̂,E#1

]Q̂

]t
. ~26!

We recall that total time derivatives incorporate both expl
and implicit renormalization-scale dependence~via running
couplings!, while partial time derivatives incorporate on
the explicit dependence.

Using theC-theorem results~17!,~19! @18,2# and the for-
malism developed in@2#, it is straightforward to arrive at

]

]t
^^E&&5

]

]t
~pib

i !. ~27!

In conventional stringys models, as a result of world-she
renormalizability with respect to a ‘‘flat’’ world-sheet cutof
any dependence on the renormalization group scale in thb i

functions is implicit through the renormalized couplings, a
hence] tb

i50. Moreover, the quantitypi appearing in Eq.
~27! may be written in the form

pi5Gi j b
j;(

n
Cii 1••• i n

gi 1
•••gi n ~28!

where theCi j ••• are the~totally symmetric! correlators of
vertex operatorŝViVj . . . &. In the usual case, as a result
the renormalizability of thes-model theory, there is no ex
plicit dependence on the world-sheet scalet in such correla-
tors or on b i , and hence the right-hand side of Eq.~27!
vanishes, implyingenergy conservation on the average.

In this derivation, renormalizability replaces thetime-
translation invariance of conventional target-space fiel
theory.

B. Curved world-sheet renormalization
and generic Liouville correlators

An additional feature appears in certain non-critical str
theories that involve solitonic structures in their bac
grounds, such asD particles@21,11,22#. There are deforma
tions in the set of$Vi% that obey a logarithmic conforma
algebra@23#, rather than an ordinary conformal algebra.
discussed in detail in@24#, the field correlatorsCi 1••• i m

in
such logarithmic conformal field theories exhibitexplicit de-
pendences on the world-sheet renormalization~time! scalet.
This, in fact, is essential in guaranteeing the gradient-fl
property~17! of the correspondingb functions@24#, which is
crucial for canonical quantization in theory space@2#, as we
discussed previously. As a result, our previous argument
energy conservation on the average breaks down in theo
with logarithmic deformations, because the right-hand s
of Eq. ~27! is no longer non-zero. Physically, this is e
plained by the flow of energy from the propagating su
system to the recoilingD-particle background@22#.

In standard~critical! string theory, the correlatorsCi 1••• i m
are associated with elements in theSmatrix for particle scat-
tering, and as such should not exhibit any explicit dep
dence on the time coordinate. In view of their explicit depe
dence on the world-sheet scale in logarithmic conformal fi
theories, which in our approach@2# is identified with the
02402
t
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e
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target time, such correlators cannot be interpreted as con
tional scattering amplitudes in target space, but rather
non-factorizableS” matrix elements. The time dependen
also means that, while the initial formulations of quantu
gravitational dissipation@1,3,4# assumed energy conserv
tion, this can no longer be guaranteed in string soliton m
els of space-time foam@11#.

There is one more formal reason for relaxing strict ene
conservation in Liouville strings, which we review belo
@25#. The discussion of the previous subsection pertained
flat world sheets, but the situation is different when one c
siders generic correlators in Liouville strings, because
world sheet has curvature expressed essentially by the
namical Liouville mode. A more correct approach is to co
sider renormalization in curved space@14#, which leads to
new types of counterterms. It is just this feature that m
lead to violations of the energy conservation, as happ
explicitly in the D-brane case@22,24#, which is a particular
case of Liouville strings. Here we briefly review the situ
tion, concentrating on those aspects of the formalism
evant to energy conservation, referring the reader intere
in more details to the literature@25,2#.

We consider theN-point correlation function of vertex
operators in a generic Liouville theory, viewing the Liouvil
field as a local renormalization-group scale on the wo
sheet@2#. Standard computations@26# yield the following
form for anN-point correlation function of vertex operator
integrated over the world sheet:Vi[*d2zVi(z,z̄):

AN[^Vi 1
•••Vi N

&m

5G~2s!msK S E d2zAĝeaf D s

Ṽi 1
•••Ṽi NL

m50
~29!

where the tilde denotes removal of the zero mode of
Liouville field f. The world-sheet scalem is associated with
cosmological-constant terms on the world sheet, which
characteristic of the Liouville theory, and the quantitys is the
sum of the Liouville anomalous dimensions of the operat
Vi :

s52(
i 51

N
a i

a
2

Q

a
, a52

Q

2
1

1

2
AQ218. ~30!

The G function appearing in Eq.~29! can be regularized
@27,2# for negative-integer values of its argument by analy
continuation to the complex plane using the the Saasch
contour of Fig. 1.

To see technically why the above formalism leads to
breakdown in the interpretation of the correlatorAN as a
string amplitude orS-matrix element, which in turn leads t
the interpretation of the world-sheet partition function as
probability density rather than a wave function in targ
space, one first expands the Liouville field in~normalized!
eigenfunctions$fn% of the LaplacianD on the world sheet

f~z,z̄!5(
n

cnfn5c0f01 (
nÞ0

cnfn , f0}A21/2,

~31!
4-5
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whereA is the world-sheet area, and

Dfn52enfn , n50,1,2,. . . ,

e050, ~fn ,fm!5dnm . ~32!

The correlation functions~without the Liouville zero mode!
appearing on the right-hand side of Eq.~29! take the form
@25#

ÃN}E )
nÞ0

dcnexpS 2
1

8p (
nÞ0

encn
22

Q

8p (
nÞ0

Rncn

1 (
nÞ0

a ifn~zi !cnD F E d2jAĝ expS a (
nÞ0

fncnD G s

~33!

whereRn5*d2jR(2)(j)fn . We can compute Eq.~33! if we
analytically continue@26# s to a positive integers→n
PZ1. Denoting

f ~x,y![ (
n,m Þ0

fn~x!fm~y!

en
, ~34!

where we use the compact notationx[(x1 ,x2) for the
world-sheet coordinates, we observe that, as a result of
lack of the zero mode:

D f ~x,y!524pd (2)~x,y!2
1

A
. ~35!

We may choose the gauge condition*d2jAĝf̃50, which
determines the conformal properties of the functionf as well
as its ‘‘renormalized’’ local limit

f R~x,x!5 lim
x→y

@ f ~x,y!1 ln d2~x,y!# ~36!

whered2(x,y) is the geodesic distance on the world she
Integrating overcn , one obtains

FIG. 1. The contour of integration for the analytically continu
~regularized! version ofG(2s) for sPZ1. The quantityA denotes
the ~complex! world-sheet area. This is known in the literature
the Saalschutz contour, and has been used in conventional qua
field theory to relate dimensional regularization to the Bogoliub
Parasiuk-Hepp-Zimmermann renormalization method. Upon the
terpetation of the Liouville field with target time, this curve r
sembles closed-time paths in non-equilibrium field theories@28#.
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Ãn1N}expF1

2 (
i , j

a ia j f ~zi ,zj !

1
Q2

128p2E E R~x!R~y! f ~x,y!

2(
i

Q

8p
a iE AĝR~x! f ~x,zi !G . ~37!

We now consider infinitesimal Weyl shifts of the world
sheet metric:g(x)→g(x)@12s(x)#. Under these Weyl
shifts, the correlatorAN transforms as follows@25,2#:

dÃN}F(
i

his~zi !1
Q2

16pE d2xAĝR̂s~x!

1
1

Â
H QsE d2xAĝs~x!1~s!2E d2xAĝs~x! f̂ R~x,x!

1QsE E d2xd2yAĝR~x!s~y!Ĝ~x,y!

2s(
i

a iE d2xAĝs~x!Ĝ~x,zi !

2
1

2
s(

i
a i f̂ R~zi ,zi !E d2xAĝs~x!

2
Qs

16pE E d2xd2yAĝ~x!ĝ~y!R̂~x! f̂ R~x,x!s~y!J G ÃN

~38!

where the caret denotes transformed quantities, and the f
tion G~x,y! is defined as

G~z,v![ f ~z,v!2
1

2
@ f R~z,z!1 f R~v,v!# ~39!

and transforms simply under Weyl shifts@25,2#. We observe
from Eq. ~38! that if the sum of the anomalous dimensio
sÞ0, the ‘‘off-shell’’ effect of non-critical strings, then ther
are non-covariant terms in Eq.~38!, inversely proportional to
the finite-size world-sheet areaA. Thus the generic correla
tion functionAN does not have a well-defined finite limit a
A→0.

In our approach to string time, we identify@2# the target
time as t5f052 logA, wheref0 is the world-sheet zero
mode of the Liouville field. The normalization is specified b
requiring the canonical form of the kinetic term forf in the
Liouville s model @16,2#. The opposite flow of the targe
time, as compared to that of the Liouville mode, follow
from the ‘‘bounce’’ picture@27,2# for the Liouville flow of
Fig. 1. The induced time~world-sheet scaleA) dependences
of the correlation functionsAN imply the breakdown of their
interpretations as well-definedS-matrix elements, wheneve
there is a departure from criticality:sÞ0.
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We now obtain a non-zero contribution to Eq.~27! from
an apparent non-trivial explicitt dependence in]gib i through
the coefficientsCi 1••• i m

i of the b i functions, associated with

the breakdown of their identification as well-define
S-matrix elements, in contrast to the conventional str
case. As discussed in@2#, one can explicitly verify this pic-
ture in the case ofD-particle recoil. The scattering of a low
energy~string! matter particle off aD particle conserves en
ergy only in the complete system, when the recoil of theD
particle is taken properly into account@22#. The recoil de-
grees of freedom are entangled with the subsystem of l
energy string matter, and their neglect leads to an exp
violation of the energy conservation condition at an opera
level. Energy conservation canat bestbe imposed in asta-
tistical average sense.

C. Can one restore the Lindblad formalism
in non-critical string?

We have seen that the non-critical-string time evolut
~21! is nothing other than a world-sheet renormalizatio
group evolution equation in coupling constant space$gi% for
the s model and, in view of the failure of energy conserv
tion, discussed above, cannot in general be written in
Lindblad form~9!. There are, however, some special case
which the equation can indeed be put in a Lindblad form,
even in such cases, as we shall explain below, the orde
magnitude of the dissipative effects is still given by Eq.~2!
andnot Eq. ~3!.

We first recall from our above discussion that the no
critical string evolution equation~21! represents diffusive
evolution in theory space of the non-critical string$gi%.
Hence, as explained in detail in@2#, there is spontaneou
localization in such a space@12,13#. Thus, even if the situa
tion resembled that of Lindblad, it would not have been
sociated with energy-driven diffusion, as was the case
cussed in@6#, but with spontaneous localization models@8#.
This can be seen straightforwardly from the form~21! for the
time evolution of the density matrix in non-critical strin
theory. In this case, there is no ‘‘environment operator’’ th
commutes with the Hamiltonian, for the simple reason t
the role ofbi is played in Liouville strings by various parti
tions ~within a generalized definition of the quantum
ordering prescription for the operatorsgi) of Gi j b

j

5Cii 1••• i m
gi 1

•••gi m. The operatorsgi play the role of posi-
tion operators in a generalized coupling-constant space,
as such, thegi do not commute withH in general, which
depends on the generalized momenta in theory spacepi .
Hence our non-critical string model for decoherence does
respect the Lindblad criterion~11!.

It can easily be seen that a double-commutator struc
could only arise in a situation whereonly the linear
anomalous-dimension terms are kept inb i5yigi1•••, with
no sum overi. In that case, making the antisymmetric orde
ing prescription denoted by :•••:, the diffusive term in the
Liouville string evolution equation~21! does acquire a
double-commutator structure

:d”H: ; yi@gi ,@gi ,r##. ~40!
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In the two-state case studied in@6,8#, this leads to an estimat
of the dissipative effects as being of orderO(yi(Dgi)2),
whereDgi is the variance in theory space, which should
distinguishedfrom real position variances. Indeed, in re
space,Dgi may be considered of order 1, and this leaves
anomalous dimension factoryi to determine the order of the
effect. This is due to the fact that, as discussed in@2#, the
Liouville string case is characterized by the appearance
pointer states@13# in theory space, namely wave packe
with Dgi;hs , wherehs is the ‘‘Planck constant’’ in theory
space, which is found@22# to be proportional to the string
coupling gs . This latter property can easily be understo
from the fact that quantization in theory space is induced
our approach by higher-genus topologies on the world-sh
and, hence, string-loop interactions@2#. In conventional
string models,gs is of order 1, namelygs

2/4p51/20. How-
ever, one may consider more general cases in whichgs is a
phenomenological parameter, to be constrained by data,
those on neutrinos@6#.

In generic non-critical string models, the operators cor
sponding to thegi are (1,1) on the world sheet, so thatyi

50, but not exactly marginal, which implies that only the
three- and higher-point-function contributions are non-z
in b i5Cjk

i gjgk1•••. The latter terms clearly do not lead t
a double commutator structure~40,12!. The order of the cor-
responding effects can, however, be estimated by the
that the correlatorsCi 1••• i m

i are viewed as~non-factorizable!

S” -matrix elements in target space, and as such can be
panded in a power series ina8k2 in the interesting closed
string case, wherek is a typical target-space four-momentu
scale,a851/Ms

2 the Regge slope, andMs the string scale.
This yields once more the estimate~2! for string-induced
dissipative effects.

This estimate is supported by many specific examp
For instance, in the context of the two-dimensional blac
hole model of@19#, the analysis of@2# showed that theex-
actly marginal world-sheet correlators involvenecessarily
the coupling of low-energy propgating modes with Planck
solitonic modes. The world-sheet correlators involving t
latter are suppressed to leading order by a single powe
the Planck massM P .7 This coupling is necessitated b
stringy gauge symmetries, specificallyW` symmetries,
which were argued in@2# to be responsible for maintainin
quantum coherence at the microscopic string level, but no
the level of the low-energy effective theory relevant to o
servation. This in turn implies that the splitting between lo
energy propagating modes and quantum-gravitational mo
is suppressed by a single inverse power ofMs or M P , lead-
ing again to the above estimate for the magnitude ofCi 1••• i n

i ,

where thegi n refer to low-energy propagating matter mode
In a similar spirit, the recoil approach to D-brane and stri
scattering@21,11#, which is another example of a gravita

7Strictly speaking, the string scaleMs , but we do not draw the
distinction here.
4-7
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tional medium, also suggests that dissipative effects are
pressed by a single inverse power of the gravitational m
scale, as in Eq.~2!.

It goes without saying, however, that there is always
possibility of a cancellation in some specific case, so that
suppression is by some higher power of the gravitatio
scale as in Eq.~3!, but we see no reason why this should
generic.

IV. NONLINEARITIES AND COMPLETE POSITIVITY

We conclude with some remarks on nonlinearities
Liouville string dynamics. It has been pointed out@10# that
the naive extension of a single-particle approach to tw
particle systems may not respect CP, and constraints on
parametrization of dissipative effects in single-particle s
tems have been proposed. However, as we argue belo
may be an oversimplification to ignore the likelhiood of no
linearities in the quantum-gravitational framework, whi
would require the issue of complete positivity@10# to be
re-evaluated@9#.

An important indication of the possible importance
nonlinear environmental effects comes from the form of
evolution equation~21! for the reduced density matrix in th
context of Liouville strings. The appearance of theGi j
;^ViVj& term given by Eq.~18! in the dissipative part of Eq
~21! is a signature ofnonlinearHartree-Fock evolution, since
the expectation valueŝ̄ & are to be evaluated with respe
to a world-sheet partition functionC@gi ,t# of the string that
is resummed over genera. According to the detailed disc
sion in @29#, such a resummed world-sheet partition functi
may be identified as the trace of the density matrixr, with a
probability distribution in theory space. As such, the dissi
tive aspects of the evolution exhibit a nonlinear integ
differential form

] trs{~Trgi
rsViVj !b̂

i@gs
j ,rs# ~41!

where Trgi
denotes a partial trace over quantum fluctuatio

about the string background$gi% @2,22#,

Trgi
~••• ![E AG21da iexpS 2

a iG
i j a j

G D
3expS 2S* 1E

S
~gi1a i !Vi D ~••• !, ~42!

and the quantum fluctuationsa i are of stochastic type, with a
Gaussian probability distribution in theory space, as a re
of the sum over world-sheet topologies.

Equation~41! should be understood as an operator eq
tion in theory space. Its form is consistent with the fact th
in the $gi% representation,Gi j ;(d2/dgidgj ) Trgi

rs , as fol-
lows from canonical quantization in theory space@2,22#, ac-
cording to whichVi→2 id/dgi . Near a fixed point in theory
space, as is reached at asymptotically large timest→`,
where perturbation theory in$gs% is valid, it might be a suf-
ficiently good approximation to ignore the nonlinearities a
parametrize the termsGi j b

j by some ‘‘constants.’’ However
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one should not expect this linearization to be valid throug
out the evolution, e.g., at early times after the production
f decay of a correlatedK02K̄0 system.

We do not pursue this point here, but emphasize that
our view, such nonlinearities need to be understood@9# be-
fore using complete positivity to impose restrictions on t
parametrization ofd”H for single-particle systems that go be
yond those imposed by simple positivity@10#. They may also
be important for the understanding of the energy-momen
conservation issue raised in@4#.

V. OUTLOOK ON THE NEUTRINO AND OTHER
EXPERIMENTS

We have reviewed in this paper why we expect that d
sipative effects on isolated systems due to quantu
gravitational effects might be as large asO(E2/M P). This
estimate is potentially very encouraging for several classe
experiments, possibly including neutrinos.

As has been discussed extensively, present and n
future kaon experiments may be sensitive to an effect of
magnitude @1,3,4#. The DAFNE experiments onf→K0

1K̄0 are particularly interesting in this regard, because
the two-particle correlation at production. However, as j
mentioned, we need more understanding of the possible
pact of nonlinear effects in this case.

The suggestion@6,30# that neutrinos might be sensitive t
dissipative quantum-gravitational effects is very interestin8

As discussed above, we do not believe that the Lindb
formalism is necessarily applicable, at least in the form d
cussed so far in the literature@6,8#. A different issue is that of
Lorentz invariance. The formalism of@1,2# is not Lorentz
invariant, and we have suggested an approximate treatm
for ultra-relativistic particles such as photons@31# or neutri-
nos @32#, which we believe to be the most appropriate sta
ing point for an analysis of neutrino data@5#. In this ap-
proach, the velocity of a photon~or massless! neutrino
deviates fromc, which is identified as the low-energy limi
of the velocity of light:

v5c3F12
E

M
1•••G ~43!

whereE is the energy andM is some large mass scale th
might beO(M P). This deviation fromc has the characteris
tics of arefractive indexin vacuo. In addition, there may b
stochastic fluctuations in the velocity of a photon~or neu-
trino! of specified energy that have adiffusive character.
These suggestions arise from our considerations of recoi
fects on quantum-gravitational vacuum fluctuations due
the passage of an energetic particle@5#. Timing observations
of distant astrophysical sources are sensitive toM;1015

GeV, and there are prospects to increase this toM;M P or
beyond@31#.

8There is also a suggestion to probe these via double-b decay
experiments@30#.
4-8



ri
e
ts
on

s-
e

.

HOW LARGE ARE DISSIPATIVE EFFECTS IN . . . PHYSICAL REVIEW D 63 024024
If only the refractive index effect~43! is present and the
quantum-gravitational mass parameterM is flavor indepen-
dent, there would be no practical consequences for neut
oscillation physics. However, consequences would ensu
M is flavor dependent or if there are also diffusive effec
We plan to return to these issues in a future publicati
cl.
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