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How large are dissipative effects in noncritical Liouville string theory?
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In the context of non-critical Liouville strings, we clarify why we expect non-quantum-mechanical dissipa-
tive effects to be®(E?/Mp), whereE is a typical energy scale of the probe, ag is the Planck scale. In
Liouville strings, energy is conserved bestonly as a statistical average, as distinct from Lindblad systems,
where it isstrictly conserved at an operator level, and the magnitude of dissipative effects could only be much
smaller. We also emphasize the importance of nonlinear terms in the evolution equation for the density matrix,
which are important for any analysis of complete positivity.
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[. INTRODUCTION fects within a Lindblad formalismh7]. However, it has been
pointed out[8] that the order-of-magnitude estimat® is
Motivated by speculations concerning quantum gravity,not applicable to modifications of quantum mechanics de-

some years ago a modification of conventional quantum mescribed by the Lindblad formalisifi7], because the energy

chanics was proposéd], which admits dissipative phenom- scaleE appearing in Eq(2) is no longer the absolute energy

ena such as transitions from pure to mixed states. This af the probe, but rathethe energy variancd E=|E;—E,|

proach postulates the appearance of a non-Hamiltonian terof the two-state system:

in the quantum Liouville equation describing the evolution

of the density matrix:

_ S (AE2>
p(t)=i[p,H]+ bHp. ) H=0\W, |- ®)

Mep

A derivation of this equation based on a string-inspired treat-

ment of quantum fluctuations in space-time has also beef is therefore crucial6,8] to know whether the Lindblad
presented2]. This formalism was applied initially to simple formalism [7] applies to the type of of open quantum-

two-state systems such as the neutral kaon sy$teB)4.  mechanical system provided by a probe propagating through
Arguments have been presented that the magnitude of su@pace-time foam.

dissipative effects could be suppresseitimally by a single There are three key requirements for deriving the Lind-
power of the gravitational scaldlp~10" GeV, i.e., blad formalism( 7], namely energy conservation at the opera-
) tor level, unitarity and entropy production. However, we

BH=0 E_) @) have pointed out previoush2] within our stringy approach
Mp to quantum gravity that, although unitarity and entropy in-

crease follow from generic properties of the world-sheet
whereE is a typical energy scale of the probe system whichrenormalization group for the Liouville string, energy con-
experiences quantum-gravitational induced decoherence duservation should be interpreted bestas astatistical prop-
ing its propagation through the quantum-gravity “medium” erty of expectation valuesnd even this may be violated in
[5]. In particular, the estimat®?) was argued to apply within cases with potential physical interest, such as a D-brane
a non-critical Liouville string model for this foamy space- model for space-time foam. Thus we do not believe that the
time medium. If the estimat€2) is indeed correct, such Lindblad formalism[7] is directly applicable to propagation
modifications of quantum mechanics might be accessible tthrough space-time foam, since energy conservation is not
experiment in the foreseeable future, for example in the neumposed at the operator level. It is this difference that per-
tral kaon system, which offers one of the most sensitive mimits the magnitude of the dissipative effects to be of order
croscopic tests of quantum mechan¢s3,4). given in Eq.(2), larger than that, Eq.3), suggested in8].

A new arena for testing quantum mechanics has now beeWe also argue that Eql) contains important nonlinear ef-

opened up by neutrino oscillations, and atmospheric-neutrinfects, which are potentially significaf®] for the analysis
data have recently been usig] to constrain dissipative ef- [10] of complete positivity.
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Il. DISSIPATIVE DYNAMICS IN THE LINDBLAD which maintains SP. Herld denotes the appropriate Hamil-
FORMALISM tonian operator of the subsystem, the positive coefficients

D@ are associated to diffusion, and it can be shown that the

We first give various definitions of the concepts used in o . . .
) . : extra (non-Hamiltonian terms in the evolution equatio®)
the following. We consider a quantum-mechanical system

with a density matrixp, in dissipative interaction with an induce complete decoherence, as recalled by the indX (

environment. In the case of a pure state described by a wa Now suppose one demands that energy be consetied
vector | W) ihe von Neumang density matrix o erZ\tor is\{ﬁe Hamiltonian operator leveko that one not only requires
' P the statistical average Tg¢H) to be independent of time, but

given by also the absence of explicit time dependence of the operator
p=lU))¥ @
. . . dH d
and in a representatiof@} the matrix elements gb are EZOZ ETr(pH)' (10)

p(a,a’)=(a’'|¥){V¥|a). (5) _ _ _ .
This requirement, together with the monotonic increase of

In general, for open systems one cannot always define a stafa von Neumann entrop$=—TrpInp, implies, for the

vector, in which case the density matrix is defined over arfnvironmental operatots; bl
ensemble of theoried:
[b,H]=0, bi=b/. (1D

p=Tr | W)(W]. (6) . .
Then, the environmental padH[p] of the evolution(9)

In the coordinate representatidi} ={x}, the diagonal ele- assumes a double-commutator fo#8,8]

ment p(x,x;t) is the probability densityP(x,t), which is
given in the pure-state case by the wave function at the time sH=">, Db, [b;,p]]. (12)
t: !

p(X,x;)=P(x,)(=|W¥(x,1)|2)=0. (7y  Clearly, for a two-state system, with energy levég,n
=1,2, the only non-trivial Lindblad operators satisfying Eq.
For well-defined representatiofia} one must have the posi- (11) are of the formb;cH.
tivity property This simplified case with only one operator suffices for
our purpose$8], and we restrict our discussion to this case.
p(a,a)=p,>0. (8)  One may then estimate the magnitude of the dissipative ef-
fects by considering a statistical averagebef with respect
Therefore, to define an appropriate density matrix, the operdo a complete basis of states, which can be taken as the
tor p, must have positive eigenvalues in the state sgage energy eigenstateg|m)} of the Hamiltonian H, H|m)
at any timet. Even if the matrixp(t=0) has positive eigen- =Eqm), m=1,2. In such a case one he
values, it is not guaranteed that the time-evolved matrix

p(t)=w(t)p(0) necessarily also has positive eigenvalues. 2

This requirement o§imple positivitySP has to be imposed, ((BH)) = Zm;ﬂ (mlp[n)(n|p|m)En(Er—Ep)
and restricts the general form of the environmental entangle-
ment. Further restrictions apply when one considers as =2(1]p[2)(2|p|1)(E,—Ey)? (13

coordinates of a subsystem within a larger system interacting
with the environment, namely the requirementscofmplete  and thus one gets the order of magnit(@efor the possible
positivity (CP) [10]. dissipative effect§8]. A similar conclusion is reached if one

In the particular case of a linear dissipative system withuses position eigenstatgs) as a basis, which is the case of
energy conservation, the Lindblad formali§ applies; i.e., Spontaneous localization mod¢l,13,d, instead of energy
the quantum evolution is governed by a Markov-type proces€igenstates. In this case, the dissipative effects are propor-
described by an equation of the form tional to the position variancélq, i.e., the separation

|g;—0,| between the centers of the wave pacKeThese

p(t)=i[p,H]+ H[p],

1t should be noticed that the density-matrix evolution equation
(9) can be recast, using E(f), as a state-vector evolution equation
of stochastic Ito typ¢12], if one wishes. We prefer the more gen-
() 1ot + eral density-matrix formalism, because the concept of a state vector
=2 DO(b/bip(t) +pbby), is not always well defined, particularly in our quantum-gravity foam
! context[1,2].
2For instance, of the corresponding neutrino probes in the ex-
pd=q 9) . .
i =Y ample discussed if6].

sH=2>, DDbp(t)b]
I
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estimates are considerably smaller than our estii@iso it ~ whereQ? is the central-charge deficit of the non-conformal
is important to address carefully the question how the Lioutheory[15,16.> When one identifies the Liouville field equa-
ville formalism differs from the generic Lindblad formalism. tion (16) with a curved-world-sheet renormalization-group
flow [2], the Liouville-dressed couplings' may be identi-
fied with appropriately renormalizea-model couplingsy;
on curved world sheets.
As was shown 2], the summation over possible topolo-
For the benefit of the non-expert reader, we now reviewgies of the world sheet induces canonical quantization of the
how a dissipative evolution equation of the fott) arises in ~ theory-space coordinat¢g'}, much as the couplings in local
the context of non-critical string, and how energyat con-  field theories are quantized in the presence of wormhole fluc-
served at@n operator levelbut at bestas astatistical aver-  tuations in space-timgl7]. This canonical quantization fol-
age We also discuss the special circumstances under whiclews from a certain set of Helmholtz conditions in theory
Eq. (9) may be obtained, in the hope of clarifying the essen-spacef2], which are obeyed provided th@ functions obey
tial differences between the two approaches. the gradient-flow property
. o ~ . 9CLg]
A. Non-critical strings in flat world sheets B'=G" o"—gJ

Ill. DISSIPATIVE DYNAMICS IN NON-CRITICAL
STRINGS

17)
Critical string theory is described by a conformal field

theory S* on the two-dimensional world she&t. We de- \here C[g,t] is the ZamolodchikovC function [18], a
scribe non-critical string in terms of a generic non-conformalrenormalization-group invariant combination of averages
field theory (© mode) on X. This is perturbed away from [with respect to Eq(14)] of components of the world-sheet
conformal symmetry(criticality) by deformations that are stress tensor of the deformedmodel, Gl is the inverse of
Sllghtly relevant (ln a world-sheet renormalization-group the Zamolodchikov metric in theory space,

sensg with vertex operator$§V;} and couplingqg;}, which

parametrize the space of possible theories: Gij=(ViV)), (18
=S4 2501V, . and the_ gngular prackets denote any expectation value over
s=5 Ld 79V (149 the partition function of the deformad model(14), summed

over world-sheet genera. The Zamolodchik@vfunction
plays the role of the off-shell effective target-space action in

The renormalization-group function for lingy' on . ) oY e
e renormalization-group function for a couplingg’ on a string theory, which allows the identification

flat world sheet reads
Bl=—eg'+p, ,BiZC}kgjgk-F”- (15) C[g]:f dt(pig'~E) (19

where ¢ —~0" is a regularizing parameter: e.g., in dimen- WhereE is the Hamiltonian operator of the string matter. In

sional regularization, the dimensionality of the world sheet isctical string theories, the couplings are exactly marginal,
assumed to bd=2—¢. As is clear from Eqs(15), ¢ plays B'=0, and this formalism has trivial content, but this is no

the role of a small anomalous dimension that makes the od®nger the casg2] when one goes beyond critical strings.
eratorV; slightly relevant. According to standard renormal-  Renormalizability of the world-sheet model implies the
ization theory, counterterms can be expanded in poles in ;cale mdgpendence of ph_yS|caI qyantltlejs, such as the parti-
and we make the standard dimensional-regularization adion function or the density matrip(g;,p’,t) of a string

sumption that only single poles matter, while higher-ordefM0Vving in the background parametrized by {ig}, viewed
poles cancel among themselves. as generalized coordinates in string theory space, witipthe

The fact that the world she&t is in general curved im- the canonically conjugate momenta in this space, which are

plies that one has to choose a regularization seaehich is ~ asSociated with the vertex operatdfsin a subtle sensf2].
local on the world shed®], as is standard in stringy mod- L&t t=Inuo be the (zero mode of the world-sheet
els[14]. The crucial next step in our approaf® is to pro- rgnormal_lzatlon-grogp scale. _S_lnce the eleme_nts of the den-
mote the scaleu(o) to a dynamical world-sheet field sity matrix are physical quantities, and hence mdependent of
which should appear in a world-sheet path integral, takingh® World-sheet scale, they must obgg] the following
the form of Liouville string theory[15]. Because of its renermalization-group equation:
target—space signatqre, whichrisgativefor the supercritical . d 9 J J
s_tr|ngs[16] we consider, the world-sheet zero mode of this —p(gi.p )= —p+g —p+p=——p=0 (20)
field is identified with target time. dt ot g’ Ip;
The conformal invariance of the stringy model may be
restored by Liouville dressinfL5], leading to the following

; . iy-
equation for the dressed coupling¥¢,g'): SWe used this approach if2] to derive a stochastic Fokker-

- N Planck equation with diffusion for the corresponding probability
M+Q NM=-=p' (16 distribution in the theory spada'}.
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where an overdot denotes a partial derivative with respect teeader that in the non-critical string theory model discussed
t. The totalt derivative above incorporatéslependence both here the full system is conformal, and as such the time
explicitly andimplicitly, through running couplings and gen- (renormalization-groupevolution (20) acquires trivial con-

eralized momenta. tent.

As an example how non-critical string dynamics enters, Probability conservation The total probability P
one may consider theeduced density matrips(gs,Ps ,t) =[dpdd Trlp(g',pj)] is conserved, because
of an effective string theorydescribing lowest-level string
modes chaEacterized bysubset{g.} e{g.i} of couplings to p:J' dpdg Tr i(Gi,—,ij) (22)
operatorgV} that are not exactly marginal. These deforma- Ip;

tions are remnants of mixtures of these lowest-level modes ) o
with higher (Planckian modes of the string, which are ini- €an receive contrlbutlons only fro_m the boundary of phase
tially exactly marginal. However, this property is lost when SPace, which must vanish for an isolated system.

the higher-level modes are integrated over, so that the rem- Entropy growth The entropyS=—Tr(plnp) is not con-
nant{V'} provide a non-trivial background “environment” Served, to the extent that relevant couplings vtk 0 are

for the observable lowest-level modes to propagate througtPresent,

This “gravitational environment” of higher-level states is Y j
guantized when one sums over world-sheet genera. We have S=(B'GijB))S,

made case studies of such systems, based on stringy black | . . .
holes in two space-ime dimensioria9]® and higher- implying a monotonic increase for unitary world-sheet theo-

dimensional analogues provided by the recplll] of ries for whichG;; is positive definite. We see from E(R3)

D-branes[20] when struck by a light propagating string that any running ofany coupling will lead to an increase in

state. At present, we only discuss some generic properties ghtropy, and we havelln_terpretEZ]_ this behay|or in terms of
this Liouville approach to space-time fodi#]. guantum models of friction. The increa&Z8) in the entropy

The non-critical subsysterfg.} acquires non-trivial dy- corresponds to a loss of quantum coherence, which is also

namics through Eq(20), since theB' functions are non- knoSvtvrl_lr:_ n;?dceols. ervation of eneradhe most important
trivial. Summing over genera, taking into account the ca- austic nservat royr St Importan

nonical quantization of the theory space mentioned abovelroPerty for our purposes here is that energatibestcon-

andidentifying the Liouville renormalization-group scale as ﬁerveg ﬁt"’i‘tt'tsizfagwn t:de r?z;ira?dzt]i' :)ninottﬁeercr:ﬁtS’n?nne
the target time variablé¢2], one arrives at the following evo- as explic € dépendenceissipatio € ramiftonia

lution equation for the reduced density matoperatorp of operator of the subsystem, thereby allowing flow of energy

; : ] the environment at an operator level. Then, iaisbest
:Eg Z%Zimiblsi'ri%otpﬁg;yg' localized, lowest-level modes oE)Pnly the right-hand equality in E¢10) that is valid, depend-

ing on the specific modél.
—i iBiG.rgl To see this, we recall, as discussed above (E@), that
0P85, Ps ) =ilps HIHTBGylOspsl 2D L alizability of ther model impliesd/dt Trp=0.
WhereH iS a Ham”tonian Operator for the subsystem Con_since we |dent|fy the tal‘get time with the renormalization-
sisting of propagating string modes, and the second term o@roup scalet on the world sheef2], d; Trps may be ex-
the right-hand side of Eq21) is an explicit string represen- Ppressed in terms of the renormalized coupligyby means
tation for H in Eq. (1). It is clear that our fundamental Of the evolution equatio21). We now compute
equation(21) stems from the requirement of renormalizabil- J J
ity (20). — = = —giG. g
This description has several important properties, which 5t<<E>> ot THEP)={(A(E-FGyA)) (24
we now describe. For notational convenience in what fol-
lows, we omit the sub-indesin the couplings and conjugate Where E is the Hamiltonian operator, and(...))
momenta, i.e.g<—;, etc., but we always imply quantites =Tt[p(---)]. In deriving this result, we took into account

in the subsystens, unless otherwise stated. We remind thethe evolution equatior(21) and the quantization rules in
theory spacé2],

[9'.9']=0, [g.p']=~—id", (25
“Here we study the general consequences of(Eg), although it
is possible that only the diagonal elements of the density matrix iras well as the fact that in string models the quantum op-
the coordinate representation, which may be interpreted as probab@—ratorsﬁi@” are functionals only of the coordinatgs and
ity densities, are in fact measurable physical quantities, in whicthgt of the generalized momemé_ We also note that, in our

;th?ﬁt:r? fruer?cli;(r)enmoeffﬁ](z zg?nu;;bri ggghed only to the world-sheet approach, the total time derivative of an operafpis given
: @s usual by

5In this case the environment is provided by discrete delocalize
solitonic states, which mix explicitly with lowest-level propagating
matter states of the two-dimensional string in marginal deforma-
tions of the two-dimensional black hole, as a reflection of infinite- $See the next section for a question mark that hangs over even this
dimensionalWWV., gauge symmetrief2]. statistical equality.

(23
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A . Fle) target time, such correlators cannot be interpreted as conven-
Q=—i[Q,E]+ o (26)  tional scattering amplitudes in target space, but rather as
non-factorizable matrix elements. The time dependence
also means that, while the initial formulations of quantum-
gravitational dissipatiorf1,3,4] assumed energy conserva-

couplings, while partial time derivatives incorporate only t'?n’ ]Eh|s Cant?n? |C}”9%E]e guaranteed in string soliton mod-
the explicit dependence. €ls of space-ime ToarpiL L.

Using theC-theorem result§17),(19) [18,2] and the for- There is one more formal reason for relaxing strict energy

- ; e ; ; conservation in Liouville strings, which we review below
malism developed if2], it is straightforward to arrive at [25]. The discussion of the previous subsection pertained to

d d i flat world sheets, but the situation is different when one con-
E«E»:E(piﬁ)- (27) siders generic correlators in Liouville strings, because the
world sheet has curvature expressed essentially by the dy-

In conventional stringyr models, as a result of world-sheet namical Liouville mode. A more correct approach is to con-
renormalizability with respect to a “flat” world-sheet cutoff, Sider renormalization in curved spaf4], which leads to
any dependence on the renormalization group scale ig'the NeW types of.counterterms. It is just this f(_aature that may
functions is implicit through the renormalized couplings, and'€ad to violations of the energy conservation, as happens

henced,8'=0. Moreover, the quantitp; appearing in Eq. explicitly in the D-brane casg22,24, which is a particular
(27) may be written in the form case of Liouville strings. Here we briefly review the situa-

tion, concentrating on those aspects of the formalism rel-
: . . evant to energy conservation, referring the reader interested
pi:GiiﬂJ~; C“l"-ingll' g (28) in more details to the literatue5,2].

We consider theN-point correlation function of vertex
where theC;;... are the(totally symmetri¢ correlators of ~Operators in a generic Liouville theory, viewing the Liouville
vertex operator$V;V; . ..). In the usual case, as a result of field as a local renormallzatl_on-group scale on the_ world
the renormalizability of ther-model theory, there is no ex- sheet[2]. Standard computationi26] yield the following
plicit dependence on the world-sheet scaie such correla- form for anN-point correlation function of vertex operators
tors or onB', and hence the right-hand side of EQ7)  integrated over the world sheat;= [d?zV(z,2):
vanishes, implyingenergy conservation on the average An=(V, -V, )

In this derivation, renormalizability replaces thetime- N "1 INTH
translation invariance of conventional target-space field
theory. =F(—s),us<

gle

We recall that total time derivatives incorporate both explicit
and implicit renormalization-scale dependerfe& running

S
dez &eaaﬁ) vil...viN> (29)
un=0
B. Curved world-sheet renormalization

L where the tilde denotes removal of the zero mode of the
and generic Liouville correlators

Liouville field ¢. The world-sheet scale is associated with

An additional feature appears in certain non-critical stringcosmological-constant terms on the world sheet, which are
theories that involve solitonic structures in their back-characteristic of the Liouville theory, and the quansig the
grounds, such ab particles[21,11,23. There are deforma- sum of the Liouville anomalous dimensions of the operators
tions in the set ofV;} that obey a logarithmic conformal V;:
algebra[ 23], rather than an ordinary conformal algebra. As
discussed in detail if24], the field correlator<C; .. ; in .

such logarithmic conformal field theories exhibitplicit de- i

pendences on the world-sheet renormalizafione) scalet.

This, in fact, is essential in guaranteeing the gradient-flowrhe I" function appearing in Eq(29) can be regularized

property(17) of the corresponding functions[24], which is  [27,2] for negative-integer values of its argument by analytic

crucial for canonical quantization in theory spd2¢ as we continuation to the complex plane using the the Saaschultz

discussed previously. As a result, our previous argument fogontour of Fig. 1.

energy conservation on the average breaks down in theories To see technically why the above formalism leads to a

with logarithmic deformations, because the right-hand sidégyreakdown in the interpretation of the correlatdyg as a

of Eg. (27) is no longer non-zero. Physically, this is ex- string amplitude oS-matrix element, which in turn leads to

plained by the flow of energy from the propagating sub-the interpretation of the world-sheet partition function as a

system to the recoilin@-particle background22]. probability density rather than a wave function in target
In standardcritical) string theory, the correlatoiS; ...; ~ space, one first expands the Liouville field mormalized

are associated with elements in tBenatrix for particle scat- eigenfunctiong ¢,} of the LaplaciamA on the world sheet

tering, and as such should not exhibit any explicit depen-

dence on the time coordinate. In view of their explicit depen- N _ ~1/2

dence on the world-sheet scale in logarithmic conformal field #(2.2) En: Cabn C0¢0+r§0 Cabns PoA 75

theories, which in our approadi?] is identified with the (3D

R

N
. Q Q1
~ _E, Cl’—_i'f‘z Q + 8. (30)

R |
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A _ 1
Anenex 3 2, aiaf(z.2)
uv

Z = Q’
j g " [ [ RoorRmfxy)
. . i , Q =
FIG. 1. The contour of integration for the analytically continued _2 — q \/;R(X)f(xlzi) . (37)
(regularized version of'(—s) for se Z*. The quantityA denotes T 8w

the (complex world-sheet area. This is known in the literature as
the Saalschutz contour, and has been used in conventional quantive now consider infinitesimal Weyl shifts of the world-
field theory to relate dimensional regularization to the Bogoliubov-sheet metric: y(x)— y(x)[1—o(X)]. Under these Weyl

Parasiuk-Hepp-Zimmermann renormalization method. Upon the inghifts, the correlatoAy transforms as follow$25,2):
terpetation of the Liouville field with target time, this curve re-

sembles closed-time paths in non-equilibrium field thedi2s. g Q2 _
SANE| X hio(z)+ FJ d2X\/;R0'(X)
whereA is the world-sheet area, and ' m
1 = = .
Ad’n: —€npn, nN=0,1.2,.., _,_Z{st d?x ’)/O'(X)‘F(S)zf d2x ‘)/O'(X)fR(X,X)

60201 (¢nv¢m):5nm- (32)
+st f d2x Py VHRO0 () 30x,Y)

The correlation function$without the Liouville zero mode

appearing on the right-hand side of E§9) take the form = A
[2p5% g g Ha —sEi aif d?x\yo(x)G(X,z))
~ 1 Q 1 . ~
ANMJ nl;[o dcnexp{ 8w go nCi 8 ,;0 RiCn _ESZ a;fr(z; ,Zi)J 5\ yor (%)
+n§0 aiqsn(zi)cn) f dzgﬁexp( "n;o ¢ncn) _1%57 f f dzxdzywy(x)&(y)ﬁe(xﬁR(x,x)a(y)] Ay
(33 (39)

whereR,= [d?£R®)(£) ¢,. We can compute Eq33) if we  \here the caret denotes transformed quantities, and the func-
analytically continue[26] s to a positive integers—n  tion G(x,y) is defined as
e Z". Denoting

(X) ( ) g(zaw)Ef(le)_E[fR(Z!Z)_FfR(w!w)] (39)
D n(X) pmly 2

foey)= 3 = (34

and transforms simply under Weyl shift5,2]. We observe
where we use the compact notatios=(x;,X,) for the  from Eq.(38) that if the sum of the anomalous dimensions

world-sheet coordinates, we observe that, as a result of the# 0, the “off-shell” effect of non-critical strings, then there
lack of the zero mode: are non-covariant terms in E(B8), inversely proportional to

the finite-size world-sheet arg&a Thus the generic correla-
1 tion function Ay does not have a well-defined finite limit as
Af(xy)=—4m6@(xy) - 1. (35  A-o0.
In our approach to string time, we identifg] the target
_ time ast=¢,=—10gA, where ¢, is the world-sheet zero
We may choose the gauge conditigd?s+/y$=0, which  mode of the Liouville field. The normalization is specified by
determines the conformal properties of the functi@s well  requiring the canonical form of the kinetic term fgrin the

as its “renormalized” local limit Liouville o model[16,2). The opposite flow of the target
time, as compared to that of the Liouville mode, follows
fr(x,x)=lim[f(x,y) +Ind*(x,y)] (36)  from the “bounce” picture[27,2] for the Liouville flow of
x=y Fig. 1. The induced timéworld-sheet scald) dependences

of the correlation functions imply the breakdown of their
whered?(x,y) is the geodesic distance on the world sheetinterpretations as well-definé®matrix elements, whenever
Integrating overc,, one obtains there is a departure from criticalitg+ 0.
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We now obtain a non-zero contribution to EQ7) from In the two-state case studied[i®,8], this leads to an estimate
an apparent non-trivial explicitdependence ing 8' through  of the dissipative effects as being of ordé(y'(Ag')?),
the coefficients(::l,,,im of the B' functions, associated with whereAg' is the variance in theory space, which should be
the breakdown of their identification as well-defined distinguishedfrom real position variances. Indeed, in real
Smatrix elements, in contrast to the conventional stringspaceAg' may be considered of order 1, and this leaves the
case. As discussed (2], one can explicitly verify this pic- anomalous dimension factgt to determine the order of the
ture in the case ob-particle recoil. The scattering of a low- effect. This is due to the fact that, as discussed2 the
energy(string matter particle off &D particle conserves en- Liouville string case is characterized by the appearance of
ergy only in the complete system, when the recoil of e  pointer stated13] in theory space, namely wave packets
particle is taken properly into accouf®2]. The recoil de- with Ag'~hg, whereh is the “Planck constant” in theory
grees of freedom are entangled with the subsystem of lowspace, which is founi22] to be proportional to the string
energy string maitter, and their neglect leads to an explicigoypling g.. This latter property can easily be understood
violation of the energy c_onservat|0n con.d|t|on at an operatokrom the fact that quantization in theory space is induced in
level. Energy conservation ca bestbe imposed in &ta- ¢ approach by higher-genus topologies on the world-sheet
tistical average sense. and, hence, string-loop interactiofg]. In conventional
string modelsgg is of order 1, namel3g§/4w=1/20. How-
C. Can one restore the Lindblad formalism ever, one may consider more general cases in whids a
in non-critical string? phenomenological parameter, to be constrained by data, e.qg.,
those on neutrinofs].
In generic non-critical string models, the operators corre-
sponding to they' are (1,1) on the world sheet, so that

the o model and, in view of the failure of energy conserva- ~ 0+ butnot exactly marginalwhich implies that only the
tion, discussed above, cannot in general be written in th&1"€€- and higher-point-function contributions are non-zero
Lindblad form(9). There are, however, some special cases ifh 8'= Cixg'g + . The latter terms clearly do not lead to
which the equation can indeed be put in a Lindblad form, buf double commutator structu¢é0,12. The order of the cor-
even in such cases, as we shall explain below, the order desponding effects can, however, be estimated by the fact
magnitude of the dissipative effects is still given by E2).  that the correlatoré:}l‘,,im are viewed agnon-factorizablg
andnot Eq. (3). . _ $-matrix elements in target space, and as such can be ex-
_\_Ne flrs_t recall fro_m our ab_ove discussion that_the_non-panded in a power series in'k? in the interesting closed-
crltlca[ stnlng evolution equation21) repr§§ents d.n‘fuiswe string case, wherk s a typical target-space four-momentum
evolution in theory space of the non-critical stridg'}. scale,a’ = 1/M? the Regge slope, antll, the string scale.

Hence, as explained in detail 2], there is spontaneous S . o
localization in such a spadé2,13. Thus, even if the situa- T.h's. y|e_|ds once more the estimafe) for string-induced
dissipative effects.

tion resembled that of Lindblad, it would not have been as . : ) o
sociated with energy-driven diffusion, as was the case dis- 1S estimate is supported by many specific examples.
cussed i6], but with spontaneous localization mod§t. For instance, in the context c_)f the two-dimensional black-
This can be seen straightforwardly from the fof2d) for the ~ Nole model of{19], the analysis of2] showed that thex-
time evolution of the density matrix in non-critical string actly marginal world-sheet correlators involveecessarily
theory. In this case, there is no “environment operator” thatthe coupling of low-energy propgating modes with Planckian
commutes with the Hamiltonian, for the simple reason thasolitonic modes. The world-sheet correlators involving the
the role ofb; is played in Liouville strings by various parti- latter are suppressed to leading order by a single power of
tions (within a generalized definition of the quantum- the Planck masdMp.” This coupling is necessitated by
ordering prescription for the operatorg') of G;;g' stringy gauge symmetries, specificaly,, symmetries,
=C”1._.img'l~ --g'm. The operatorg' play the role of posi- which were argued ifi2] to be responsible for maintaining
tion operators in a generalized coupling-constant space, anéuantum coherence at the microscopic string level, but not at
as such, they' do not commute wittH in general, which the level of the low-energy effective theory relevant to ob-
depends on the generalized momenta in theory space Servation. This in turn implies that the splitting between low-
Hence our non-critical string model for decoherence does nd¢nergy propagating modes and quantum-gravitational modes
respect the Lindblad criteriofl1). is suppressed by a single inverse poweNafor Mp, lead-

It can easily be seen that a double-commutator structurég again to the above estimate for the magnitud@}(llf..in,

could only arise in a situation whereonly the linear where theg'n refer to low-energy propagating matter modes.
anomalous-dimension terms are kep@in=y'g'+- - -, with  |n a similar spirit, the recoil approach to D-brane and string

no sum ovei. In that case, making the antisymmetric order-scattering[21,11], which is another example of a gravita-
ing prescription denoted by : - :, the diffusive term in the

Liouville string evolution equation(21) does acquire a
double-commutator structure

We have seen that the non-critical-string time evolution
(21) is nothing other than a world-sheet renormalization-
group evolution equation in coupling constant spag'é for

o "Strictly speaking, the string scaM,, but we do not draw the
bH: ~ y'[d'\[d".p]] (400 distinction here.
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tional medium, also suggests that dissipative effects are supne should not expect this linearization to be valid through-
pressed by a single inverse power of the gravitational massut the evolution, e.g., at early times after the production in

scale, as in Eq(2). ¢ decay of a correlate®—K° system.

It goes without saying, however, that there is always the e do not pursue this point here, but emphasize that, in
possibility of a cancellation in some specific case, so that thgur view, such nonlinearities need to be understf@icbe-
suppression is by some higher power of the gravitationafore using complete positivity to impose restrictions on the
scale as in Eq(3), but we see no reason why this should beparametrization ofH for single-particle systems that go be-
generic. yond those imposed by simple positiv{t}0]. They may also

be important for the understanding of the energy-momentum
IV. NONLINEARITIES AND COMPLETE POSITIVITY conservation issue raised [i#].

We conclude with some remarks on nonlinearities in
Liouville string dynamics. It has been pointed ¢a0] that V. OUTLOOK ON THE NEUTRINO AND OTHER
the naive extension of a single-particle approach to two- EXPERIMENTS
particle systems may not respect CP,_ano! constraints on the We have reviewed in this paper why we expect that dis-
parametrization of dissipative effects in single-particle Sys's'pative effects on isolated systems due to quantum-
s e been proposed. Rwever a2 e ardie B0V fautatonl ecs gt be as large SXEYM,). Ths
nay be an P gne - _estimate is potentially very encouraging for several classes of
linearities in the quantum-gravitational framework, which

. . e experiments, possibly including neutrinos.
‘r’é?g\lgll:z?ggg] the issue of complete positiviy0] to be As has been discussed extensively, present and near-
. T . . future kaon experiments may be sensitive to an effect of this
An important indication of the possible importance of

. : 0
nonlinear environmental effects comes from the form of them@thde[l’s"H' The DAFNE experiments orp—K

O . . . . .
evolution equatior{21) for the reduced density matrix in the + K~ are particularly interesting in this regard, because of
context of Liouville strings. The appearance of B, the two-particle correlation at production. However, as just
~(V;V;) term given by Eq(18) in the dissipative part of Eq. mentioned, we need more understanding of the possible im-
(21) is a signature ofionlinearHartree-Fock evolution, since Pact of nonlinear effects in this case. g
the expectation valugs--) are to be evaluated with respect 1€ Suggestiofi6,30] that neutrinos might be sensitive to
to a world-sheet partition functioW[g',t] of the string that dissipative quantum-gravitational effects is very mtergsﬁmg.
is resummed over genera. According to the detailed discuéf—‘s discussed above, we do not believe that the Lindblad
sion in[29], such a resummed world-sheet partition function ormalism is necessavily applicable, at least in the form dis-
may be identified as the trace of the density magriwith a cussed so far in the literatuf6,8]. A different issue is that of

probability distribution in theory space. As such, the dissipa-_l‘oremZ invariance. The formalism ¢f.,2] is not Lorentz

tive aspects of the evolution exhibit a nonlinear integro-"varant, and we have suggested an approximate treatment

differential form for uItra—reIa_tivistic par.ticles such as photdr&l] or neutri—
nos[32], which we believe to be the most appropriate start-
atpsa(Trg-PsViVj)Bi[gjsvps] (41)  ing point for an analysis of neutrino dafa]. In this ap-

proach, the velocity of a photoior massless neutrino
S'deviates fromc, which is identified as the low-energy limit

where Ty denotes a partial trace over quantum fluctuation . .
i of the velocity of light:

about the string backgrourd;} [2,22),

Gl
Trgi(...)Ef \/Fdaie)([{_a'G a') v=cX

(43

1 E+
VIR

r

_ ool whereE is the energy and/ is some large mass scale that
xex;( St L(g.+ a')v')( ), (42 might be@(Myp). This deviation fromc has the characteris-

tics of arefractive indexin vacuo. In addition, there may be

and the quantum fluctuationg are of stochastic type, with a stochastic fluctuations in the velocity of a phot@r neu-
Gaussian probability distribution in theory space, as a resulrino) of specified energy that have diffusive character.
of the sum over world-sheet topologies. These suggestions arise from our considerations of recoil ef-

Equation(41) should be understood as an operator equafects on quantum-gravitational vacuum fluctuations due to
tion in theory space. Its form is consistent with the fact thatthe passage of an energetic parti@¢ Timing observations
in the {g;} representationGij~(52/59i5gj)Trgips, as fol-  of distant astrophysical sources are sensiti.velvt& 10'°
lows from canonical quantization in theory spd@e2?], ac-  G€V, and there are prospects to increase thisiteMp or
cording to whichV;,— —i 8/ 8g'. Near a fixed point in theory Peyond[31].
space, as is reached at asymptotically large timesc,
where perturbation theory ifg.} is valid, it might be a suf-

ficiently good approximation to ignore the nonlinearities and ®There is also a suggestion to probe these via dogbtiecay
parametrize the tern(;; 8! by some “constants.” However, experiment§30].
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